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The Dataset Assembly Tool is a resource to make data wrangling faster and easier, to 
improve the quality and timeliness of IDI research.

This presentation includes additional details in the speaker’s notes – reading through the 
presentation is also recommended.
You may want to print the presentation as “Notes Pages”, with the slides and the 
presenter notes.

This presentation should be read/watched alongside “Accelerating Dataset Assembly: 
Primer and guide to the Dataset Assembly Tool”, which discusses the underlying 
approach and provides further technical information as well as a worked example.

We include images of code. ACTUAL CODE IN THE TOOL MAY HAVE BEEN UPDATED 
SINCE THIS PRESENTATION WAS MADE. So notes refer to the code in the images in this 
presentation, users will have to use their best judgement when comparing this 
presentation to the working tool.
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Making dataset assembly easier

Data rich, structure poor

Many different datasets in the IDI

• Rich and detailed data

• Without consistent format or logic

IDI projects can spend a long time on 
data preparation

• More datasets, more preparation

Dataset assembly tool

Goal to reduce preparation time

• Move from data wrangling to 
analytics sooner

• Test ideas faster

• Create your own definitions

• Share and reuse definitions

IDI is a rich resource for research. But because the data is gathered for administrative 
purposes it is not well prepared for research use. Hence significant effort can be 
required to construct a suitable dataset for research – or researchers limit themselves to 
only a small part of the IDI.

This is not the first tool developed to make it easier to pull different datasets together. 
However, where previous tools have seen limited reuse across different projects, the 
assembly tool has already been applied to multiple projects so we are confident that it 
offers something of wider value.

The tool was designed within a broader set of practices and patterns. When used in the 
context of these practices and patterns, it also supports knowledge sharing and provides 
further acceleration to projects via the reuse of materials between researchers and 
between projects. If researchers follow similar processes, then components of our 
research will be more easily shared, reused, and cited by our colleagues. This is 
discussed in further detail in “Accelerating Dataset Assembly: Primer and guide to the 
Dataset Assembly Tool”.
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Why should I use this tool?

As an IDI researcher, I want to…

1. Construct analysis ready, rectangular 
datasets from a range of data sources 
with ease

2. Keep different project stages separate 
and independent from each other

3. Design new variables without being 
required to fit a specific format

4. Add new variables to an existing 
project dataset with ease

5. Transfer definitions between projects 
as easy as copy & paste

6. Trace where data has originated from

7. Replicate parts of the automated 
assembly manually for validation and 
quality assurance

8. Use and understand the tool without 
learning a new programming language

9. Debug only a small part of the process 
when an error occurs, and know 
rapidly which part is at fault

If you want the same, this tool is 
for you

I assessed several existing tools (including my previous attempts) and identified these 
nine things I want to do as a researcher based on what needs these tools met, and 
where there was still frustration. The Dataset Assembly Tool was then built to address 
each of these needs.

How does the tool meet these needs?
1. Accepts lists of inputs, and outputs rectangular dataset
2. Definitions must run before assembly, most efficient to re-run assembly when 

adding new definitions than appending them on
3. Tool input adapts to different formats
4. Keeping assembly fast so re-assembling is easy
5. Definitions are separate from assembly
6. Input control files act as record of what was assembled & from where
7. Assembly tool uses a single core query – query is saved to disc for inspection, and it 

easy to duplicate 
8. Tool written in R, but control files are Excel (everyone can use Excel)
9. Multiple places of error checks with sensible messages
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Overview of how it works

Approximate sequence

1) IDI access

2a) Study population is defined

2b) Measure(s) of interest defined

3) Control files filled in with 
population and measure details

4) Dataset Assembly Tool executed

5) Analysis on rectangular dataset

IDI

Dataset 

Assembly 

Tool

Population Control 

filesMeasures

Assembled 

data for 

analysis

Raw data

Definitions/
business rules

Assembly

Analysis

1. Access to the raw data/potential
2. Researchers define their study population and the events/measures that are of 

interest to their research.
• All of these definitions are independent from each other.
• Definitions could be copied in from other projects
• No way to avoid having to define what you are interested in

3. Excel control files are populated
• Includes where to get the definition from
• How to summarise/prepare it
• Control files becomes your initial data dictionary

4. Dataset Assembly Tool is executed
• Control files are read & checked
• Every measure is created for every population

5. Assembled data is available for research
• (start with data cleaning – e.g. how should missing values be handled)

More details and a worked example can be found in “Accelerating Dataset Assembly: 
Primer and guide to the Dataset Assembly Tool”. Also the assembly tool code contains 
an example using IRD data.

4



Who-when-what pattern of assembly

Inputs

Population definition:

• Identities

• Start dates

• End dates

Events:

• Identity

• When it occurred

• Event details

Outputs

For every identity

• A summary 

• Of the events

• That occurred between start and 
end dates

The assembly tool has been designed to carry out the most common dataset assembly 
pattern we have observed. This pattern takes two inputs:
1. Population definition and a date range of interest
2. A (series of) event definitions with identities, dates and details
Defining each of these separately is usually straightforward.

For example:
1. Population = A list of school leavers, from when they graduated until one-year later
2. Event = Income from wages & salaries reported to IRD
These could be combined to output
For each school leaver, total earnings in the year following graduation.
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The core query

APPEND TO [OUTPUT TABLE]

SELECT p.identity
, p.population_label
, p.start_date
, p.end_date
, p.period_label
, m.measure_label
, FUNCTION(m.value) AS measure_value

FROM [population_table] AS p
INNER JOIN [measure_table] AS m
ON p.identity = m.identity
AND p.start_date <= m.end_date
AND m.start_date <= p.end_date

GROUP BY p.identity, p.population_label, 
p.start_date, p.end_date, p.period_label, 
m.measure_label

Every population and measure

• Loops through control files

• Inner join

• Overlapping dates

Outputs two tables

• Long-thin intermediate table

• Rectangular final table

One SQL query does all the main processing. This core query is shown on the right side. 
It is adapted for each row in the control file, but the overall pattern remains the same.

This core query outputs a long, thin table. This intermediate table is designed so it is 
easy to add all the measures to it using only the core query. This simplifies the tool, 
making it faster and less vulnerable to errors.
Once all the measures have been appended on to the intermediate table, the assembly 
tool pivots the table to create a rectangular final table that is ready for research use: 
One row per observation, and one column per measure.

Because the core query inner joins by identity and overlapping dates, researchers can 
define their research population completely separate from defining their measures. For 
my measures, I aim to create the best definition possible (for all people and time 
periods), knowing that the assembly tool will return only those details that apply to my 
study population and time period.
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First time setup

Before you can use the tool for the first time, some setup is required. This should only 
be necessary the first time.
Unless you follow these steps the tool will not work.

Skip over this section in a short presentation.
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Installation

Copy tool into project

• Fetch from GitHub or IDI wiki

• Unzip

• Check contents are correct

Two setup tasks in two files

• dbplyr_helper_functions

• automated_tests

The tool is a set of R scripts, plus accompanying documentation, tests and exemplars.
You can download these from SWA’s GitHub page:
https://github.com/nz-social-wellbeing-agency/dataset_assembly_tool
Or check the IDI wiki for a copy that is already inside the datalab.

This should arrive bundled in a zip file. Copy into your IDI project and unzip.
The image shows the expected contents of the tool.

Once you have unzipped the tool there are two tasks that need to be completed in two 
different files.
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Set connection details

dbplyr_helper_functions

• SQL connection details are not 
released from data lab for security

• These can be found on the wiki: 
Access  “SQL, SAS and R access”

• Enter details into lines 26-28 of 
dbplyr_helper_functions

(Top left image) On the IDI wiki, under the heading “Access”, click the link “SQ:, SAS, R 
and Stata access”.
(Bottom right) Read off the server name, port number, and database under the “Access 
from R” heading
(Bottom left) Enter these values into the “connection details” section at the top of 
dbplyr_helper_functions.R

The final results looks like:

DEFAULT_SERVER <- “[server.name.bond]”
DEFAULT_DATEBASE <- “[database.name.james]”
DEFAULT_PORT <- 007

9



Run automated tests

automated_tests

Automated tests confirm that the tool 
is setup correctly and ready to go

• Set the directory (line 29)

• Set your project schema (line 31)

• Run / source the script

• Tests take at most 5 minutes

• Output reports tests passed

The assembly tool is covered by unit record tests. These are tests that check all of the 
functions of the tool (and associated code) are performing correctly. They include 
copying a worked example onto the SQL server and checking that it returns the correct 
output.

All the tests and resources required to run them are found in the “tests” folder. However, 
all you need to access is “automated_tests.R”.
This script will run all the automated tests and output a summary. If all the tests pass 
then you have confirmed that the tool is setup and running correctly.

Top half of image is the testing script. The two lines that need to be updated are circled.
Bottom half of image is the testing output:
• All the tests run
• Whether tests passed (OK), failed (F), gave warnings (W) or were skipped (S)
• Circled is the final summary showing all tests were passed.

The tests are best run in a new/empty session. If errors occur / the tests fail, then see 
the section at the end of this presentation of what to do when things go wrong.
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A note on packages

Tool works without installing packages

When Stats NZ updated the R Server in the IDI at the start of August 2020, they 
pre-installed a wide range of R packages.

The Dataset Assembly Tool works with all the pre-installed packages.

Package versions

• Over time some packages will need updating.

• Due to how packages interact this could cause the tool to fail.

• A list of installed packages from when the tool was last tested is provided.

We also provide a list of the packages & versions installed with our working 
configuration of the tool. Some users with other versions of packages installed may 
experience errors. Ensuring that your package versions are consistent with ours reduces 
the risk of this. As Stats NZ has already installed a range of default packages, it should 
generally be sufficient to uninstall any version you have installed yourself and rely on the 
version Stats NZ provide to all users.

Package & version differences are more likely to cause warnings than errors. E.g. prior to 
August 2020 the tool would produce warnings from the ‘rlang’ package about some 
commands being depreciated. Warnings are unlikely to prevent the tool from running.
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Exemplar use in a new analysis

This section covers an example of using the tool. It demonstrates all the key workings 
that researchers will need.

As part of designing this example, I went from an empty project to a complete dataset in 
half a day.
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Three core user parameters

• Project code/schema

[DL-MAA20XX-YY]

• Refresh for analysis

[IDI_Clean_20YYMMDD]

• Table prefix

[prfx_ ……………]

Common prefixes

tmp_

• Temporary tables/intermediate steps

• Can be deleted without warning or checking

defn_

• Definitions of measures of populations

• Can be deleted once final dataset is created

proj_

• (Usually a project specific acronym)

• Assembled data and output tables

• Deleted once results are published

Overarching project parameters

Several parameters turn up in many places throughout a research project.
Deciding these once at the start of the project helps ensure consistency throughout the 
project.

It is the user’s responsibility to ensure that these parameters are consistent throughout 
their analysis.
(The tool does not check that you have used the same refresh or schema name 
throughout. The user is responsible for ensuring consistent parameters are used.)

A table prefix is optional, but highly recommended.
Because tables are sorted alphabetically in SQL Server, using a prefix keeps related tables 
together. It also makes purpose of table clear. Aids identification and removal of 
unneeded tables – being a good steward to data lab resources.

As an example of a project specific prefix, I used “chh_” as the prefix for my analysis into 
“constructing households”
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Define study population

Components

Compulsory:

• Who

Optional:

• When

• Label for identity

• Label for time period

An SQL script must be written that defines your population of interest. It must contain 
‘who’ is in the study population.
If when each person is being studies differs then the table should also contain when.
If the same person is studied more than once (e.g. before and after groups), or in more 
than one time period, you may also wish to provide labels for the identity (or group of 
identities) or the time period.

More than one study population can be defined (E.g. one definition for treatment, and 
one definition for control), each in its own file.
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Configure control file for population

One row for each population

Entries are delimited

• Constants in double-quotes " "
e.g. "population_label"

• SQL objects in square brackets [ ] 
e.g. [table_name]

Enter the details of each population in the table.
All columns other than File are compulsory. Every cell must be populated. Compulsory 
cells must be delimited.

Columns:
• Database, schema and table names give the SQL location where the table is saved
• Identity is the column that contains your individual identifiers (will most often be 

[snz_uid] but could take other values, like meshblock codes if needed)
• Summary period start and end date define the period of time of interest for our 

population (Format: “YYYY-MM-DD”, e.g. “2020-12-31”)
• Identity labels are assigned to the identities
• Summary period labels are assigned to the periods

The example control file, creates a panel of data for the same population for three years.

Details on each column of the population file

1. File (optional) – Recommended you record the file name of the SQL script that
creates your study population.

2. Database Name (required, sql object only) – The name of the SQL database
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where the study population is stored. Most likely [IDI_Clean_XXXX] or
[IDI_Sandpit] or [IDI_UserCode].

3. Schema Name (required, sql object only) – The name of the schema where the
study population is stored. Most likely a data-type scheme, e.g. [moe_clean], or a
project schema, e.g. [DL-MAA20XX-XX].

4. Table Name (required, sql object only) – The name of the table/view where the
subject population is stored.

5. Identity Column (required, sql object or constant) – The name of the column that
contains the unique identifier for the population. This can be an individual
identifier, e.g. [snz_uid], or some other identifier, e.g. [snz_xxx_uid], [mb_2018],
[school_id].

6. Label Identity (required, sql object or constant) – Used to label your study
population, e.g. “treat” and “control”. Use a placeholder like “person” if
unneeded.

7. Summary Period Start Date (required, sql object or constant) – Start date for time
of interest for the subject population. If entering constants, the data must be
given as “YYYY-MM-DD” e.g. “2020-01-01” as the start of 2020.

8. Summary Period End Date (required, sql object or constant) – End date for time of
interest for the subject population. If entering constants, the data must be given
as “YYYY-MM-DD” e.g. “2020-12-31” as the end of 2020.

9. Label Summary Period (required, sql object or constant) – Used to label your study
periods, e.g. “before” and “after”. Use a placeholder like the study year “2018“ if
unneeded.

The assembly tool does not require the input or output to be individual people. 
Identity_column could contain geographic or business identifiers. More details on how 
different types of identities can be used are discussed below under “Non-individual 
identities”.

The start and end date are used to filter all the measures. Only measures that overlap 
with the summary period for the population will be included in the output. So start date 
“2020-01-01” and end date “2020-12-31” will exclude measures that sit outside the year 
2020 (e.g. income, hospital visits, benefit receipt that ended before 2020, or that started 
after 2020 will be excluded).

The correct format for dates is YYYY-MM-DD. Other date formats may not result in an 
error but could lead to incorrect output (for example, depending on the computer’s 
settings DD-MM-YYYY and MM-DD-YYYY dates can be treated as the wrong type).
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Define measures for analysis

Event based definitions

Tool is intended to work with 
measures that are one row per event

Events must have

• Who

• When

And may have additional details

Example on RHS is of an employment event. The details of this event include who, when, 
income paid, employer’s identity.

The tool works best when the measures are from tables that are one row per event. It 
helps that most IDI tables are already one row per event (e.g. hospital discharge, 
monthly tax summary, school enrolment). But raw table events may not be the events 
we want to study, and so we make new events from old ones (e.g. hospital discharge 
event  knee replacement surgery event; OR school enrolment  studying at university 
event).

I recommend, defining simple measures as Views in IDI_UserCode.
And defining more complex measures as Tables in IDI_Sandpit.
For some very simple events you may be able to use raw data directly.
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Reuse measures for analysis

Old definition Revised definition

This is also a good opportunity to reuse/revise previous definitions.
In the example above, we update some of the parameters of an old definition so it can 
be reused as a new definition.

Both images show the meta-data header I use for my definitions.
One component of this header is a list of parameters that are particular to an analysis 
(e.g. project prefix, IDI refresh, target date). This makes find & replace an easy means of 
reusing entire definitions.

When doing this take care to check your inputs for consistency. The user is responsible 
for ensuring the correct parameters (including choice of IDI refresh) are used 
everywhere. You will get odd results if you reuse definitions that refer to a different IDI 
refresh.
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Configure control file for measures

One row for each output

A single event can produce multiple outputs

Same delimiting as population control

File becomes your starting data dictionary

Enter the details of each measure you want in your output.
All columns other than File and Notes/description are compulsory.

Configuration of measure file is very similar to the population file. Please refer to notes 
from configuration of population file. 

Columns:
• Database, schema and table names give the SQL location where the table is saved
• Identity is the column that contains individual identifiers
• Measure period start and end date define the period of time of the event (Format: 

“YYYY-MM-DD”, e.g. “2020-12-31”)
• Label measure is the labels your output will have (recommended to use underscores 

instead of spaces)
• The value your output will have is determined by “Measure_summarised_by” applied 

to “Value_measure”
• Proportional is used to pro rate to the intersection between the summary period and 

the measure period. It is especially important when working with the duration 
summary type.

Details on each column of the population file

1. File (optional) – Recommended you record the file name of the SQL script that
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creates your measure.

2. Database Name (required, sql object only) – The name of the SQL database where
the measure is stored. Most likely [IDI_Clean_XXXX] or [IDI_Sandpit] or
[IDI_UserCode].

3. Schema Name (required, sql object only) – The name of the schema where the
measure is stored. Most likely a data-type scheme, e.g. [moe_clean], or a project
schema, e.g. [DL-MAA20XX-XX].

4. Table Name (required, sql object only) – The name of the table/view where the
measure is stored.

5. Identity Column (required, sql object or constant) – The name of the column that
contains the unique identifier for the population. This can be an individual
identifier, e.g. [snz_uid], or some other identifier, e.g. [snz_xxx_uid], [mb_2018],
[school_id].

6. Measure Period Start Date (required, sql object or constant) – Start date for event.
If entering constants, the data must be given as “YYYY-MM-DD” e.g. “2020-01-01”
as the start of 2020.

7. Measure Period End Date (required, sql object or constant) – End date for event. If
entering constants, the data must be given as “YYYY-MM-DD” e.g. “2020-12-31”
as the end of 2020.

8. Label Measure (required, sql object or constant) – The label assigned to the
output measure. It is recommended to avoid special characters and use
underscore “_” instead of space “ “.

9. Value Measure (required, sql object or constant) – The variable name that will be
measured. In some cases this will be a placeholder value.

10. Measure Summarised By (required, specific list of accepted commands) – This
column stores the (pre-defined) function that will be used to summarise the
measure. The next slide details on what these functions are and what they do.

11. Proportional (required, TRUE or FALSE) – Proportional is used to pro rate to the 
intersection between the summary period and the measure period. If a variable is 
measured with proportional being TRUE, then the measure summary (which is 
usually duration / number of days) will be calculated for the period falling within 
the population summary start and end dates.

12. Notes / Description (optional) – Recommended you record a short description of 
the variable that is produced.

Value_measure may take placeholder values. For example, when calculating DURATION a 
column containing additional values (such as income earned) is not required. Or when 
counting all records, we count a placeholder “1” as counting a specific column only 
counts people with a non-missing value for that column. We use “1” as our placeholder.
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Summary types for measures

Measure_summarised_by column

• MIN minimum of the value_measure column

• MAX maximum of the value_measure column

• SUM sum of all amounts in the value_measure column

• MEAN the mean of the value_measure column

• COUNT number of non-missing values

• DISTINCT number of distinct values

• EXISTS indicator for any records, 1 if COUNT > 0; else 0

• DURATION sum of number of days in events

• HISTOGRAM counts each unique value in the input, generates multiple outputs

MIN, MAX, SUM, MEAN, DISTINCT and HISTOGRAM apply to Value_measure column in 
control file.
DURATION does not use Value_measure column. We use “1” as a placeholder.
COUNT and EXISTS will not count missing values in the Value_measure column. We use 
“1”, to count all records.

You may need to cast values into numeric type before assembling with the tool. For 
example, a column might contain codes “00” and “01”, but if these are stored as text 
then they can not be summarised using MIN, MAX, or SUM. They could be summarised 
using HISTOGRAM, but it is often best to convert/cast these values to numbers when 
creating the input measures.

Most of these functions translate direct to the equivalent SQL summary function.
MEAN can also be created by calculating SUM and COUNT and then dividing SUM by 
COUNT.
DISTINCT will count missing/NULL columns as a separate type 
(https://www.sqlservertutorial.net/sql-server-basics/sql-server-select-distinct).
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Histogram produces multiple outputs

Count each unique value in the input, generates multiple outputs

ID Paid

111 Y

222 N

ID Code

A 2

A 2

B 1

C 1

C 3

ID Paid=Y Paid=N

111 1 0

222 0 1

HISTOGRAM
ID Code=1 Code=2 Code=3

A 0 2 0

B 1 0 0

C 1 0 1

HISTOGRAM can be a good choice for summarising text columns that can not easily be 
cast into text.

HISTOGRAM can be considered as a “count each type” summary measure. It produces 
multiple output columns, one for each unique value in the input. This is most useful 
when the input column contains text codes. Because the assembly tool only outputs 
numeric values, HISTOGRAM can be used to produce a collection of indicator columns 
from text. There are helper functions in the supporting R scripts to reverse this and 
combine multiple columns back into a single one.

HISTOGRAM produces a new column in the output table for each unique value in the 
value_measure column. Before using HISTOGRAM, check that there are only as small 
number of unique values in the column: ~100 values (e.g. TA codes) is fine. More than 
1000 unique values will produce errors because SQL has a limit of 1024 columns in a 
single table.

Researchers who are familiar with R may find the ‘collapse_indicator_columns’ function 
in dbplyr_helper_functions useful for recombining histogram columns back into a single 
column (where applicable).
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Population dates will filter measures

Only measures that overlap the population dates are included

Measures that do not overlap are excluded.

Measures that overlap (even a little) are included.

This applies to all summary types. Summary dates for population are compared against 
dates for measures. Only measures that overlap with the summary period will be 
included in the output.

Orange gives the summary period for a member of the study population. Grey is 
excluded, Teal is included, Yellow is included but depends on the Proportional column.

In order from top to bottom in the figure:
1. Measures that end before the population summary start date are excluded.
2. Measures that start after the population summary end date are excluded.
3. Measures that sit entirely within the population summary period (measure starts 

after population summary starts, and measure ends before population summary 
ends) are included.

4. Measures that start (or end) within the population summary period but end (or 
start) outside the population summary period are included but are affected by the 
‘Proportional’ column of the control file.

5. Measures that start before, and end after, the population summary period are 
included, but are affected by the ‘Proportional’ column of the control file.
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Proportional will pro-rata measures

When there is overlap, how should non-overlap be handled?

Proportional = False  blue and yellow part of measures

Proportional = True  only blue part of measures

For DURATION, SUM, and MEAN summary types only. When there is some overlap 
between a measure and the summary period, Proportional determines how non-overlap 
is handled. Either we include the entire value/measure or we scale it down (pro-rata) to 
the amount that overlaps.

Orange gives the summary period for a member of the study population. Teal is 
included, Yellow depends on the Proportional value. The labels are:
• a – the measure start date
• b – the measure end date
• a’ – the population start date used when measure starts before the summary period.
• b’ – the population end date used when measure ends after the summary period.
The columns to the right shows how the value of SUM or DURATION changes depending 
on proportional. MEAN changes in that equivalent way to SUM.

When using DURATION you will often want PROPORTIONAL = TRUE.
• PROPORTIONAL = FALSE with DURATION counts all days where the event period has 

some overlap with the summary period.
• PROPORTIONAL = TRUE with DURATION counts all days in both the event period and 

the summary period.
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Setup run_assembly

While you can call the assembly tool programmatically from R, the script run_assembly.R 
has been created to simplify the most common case: assembling a rectangular dataset 
from a pair of control files.

Enter the details in the section labelled user controls.
For your first run, ensure that development mode is set to TRUE.

You can then run the script
• click the bottom in the top-right of the script window labelled “Source”
• OR press Ctrl + Shift + S

You will start to see console output (info messages for the user) like on the right.
Next slide shows the end of the console output.

Note the tool (attempts to) assembles every measure (row in the measures table) for 
every population (row in the populations table). Hence in the example above, the tool 
covers 21 measures for 12 populations (it was a panel of 12 quarters).
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Trial in development mode

Early check

Development model limits processing 
to only the top 1000 records

• Test on a subset of the data

• Find errors quickly

• Check for measures performing 
especially slowly

Image gives the end of the console output (info messages for the user) from a run. Once 
development mode is finishes, it is good practice to inspect the output table in SQL to 
ensure everything is as expected.

Why development mode? This is a design pattern I use to avoid long wait times during 
development/testing. Because large datasets can require large amounts of processing 
time DEVELOPMENT_MODE = TRUE limits the program to only the top 1000 records 
from each measure. This helps check that every input dataset performs as expected, but 
not so large that we wait several hours for a failure. Ideally the tool will finish in <10 
minutes in development mode.

A good thing to check from the console log is how long did each measure take to run. 
Measures that are slow to run may need improvement (more efficient SQL code,  
convert views to tables, add indexes to tables).

Even if development mode runs without error or concern this does not guarantee 
producing the full dataset will be error free. We have observed cases when no error 
occurs with development mode turned on but does occur with development mode 
turned off, because the record that causes the error is not in the first 1000 records.
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Production run

Produce full dataset

Two outputs

• Long-thin table, one row per 
measure and identity

• Rectangular table, one row per 
identity, one column per measure How long does it take?

5 million people

21 measures

12 time periods

Took:

4 hours

20 minutes per time period

Once you have tested using development mode, then you are ready to produce your full 
dataset.
Setting DEVELOPMENT_MODE = FALSE means the tool will assemble the entire dataset. 
This will take longer than development mode.

RHS gives example of a large production run. 
For 5 million NZers, 21 measures, and 12 time periods: Total time taken was 4 hours.
This is ~20 minutes per time period (for a single cross-section).

So, an entire panel dataset assembled in a day (but don’t sit waiting for it to finish).
And, a cross-sectional dataset assembled while you plan the next steps.

run_assembly.R requires you to specify two output table names.
• A long-thin table directly produced by the tool. It is easiest for the tool to produce 

one row per identity-and-measure-pair.
• A rectangular table for researchers with one row per identity and one column per 

measure.
For a worked example see the outline document.
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While running

Action takes place in SQL

• R session unresponsive

• Can’t save, interrupt, stop, or open

Minimal R 
resource use

• 8 GB dataset 
assembled 
in SQL

• <250 MB of 
R memory

Assemble the entire dataset takes longer than development mode. Perhaps 10 times 
longer.

Because most of the assembly takes place on the SQL server, the tool puts minimal 
pressure on R memory or resources.
However, while it is running the tool is making consistent use of SQL server resources. So 
you still need to be considerate of other users – the datalab is a shared resource.

Even though SQL server does most of the work, your R session will still be unresponsive 
while the tool is running as R waits for SQL.
If you are an R developer, you may want to run two R sessions – one for the tool and the 
other for development.
• You will need to open the second session before starting the tool.
• You are responsible for closing both R sessions – the datalab is a shared resource.

The only way I have found to stop R running when it is waiting for the SQL server to 
respond is to close the browser (R Studio is accessed in the IDI via a web-browser), 
reopen it, and log back in. You will then be prompted that R is non-responsive do you 
want to stop any running process.
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Conduct your analysis

Begin by tidying up dataset

• Replace missing values with zero

• Collapse histogram columns to 
indicators

• Checking measures for outliers

• Explore and visualise

• Etc.

This tool is an assembly tool. Unless you conducted thorough data cleaning before 
assembly, you will need to conduct it afterwards.

Two most common tasks post-assembly tool are:
• Replace missing values with zeros: If a measure is sum income and a person has no 

income, then this value will be missing/NULL for them. You will need to decide how 
to handle missing values. In many cases you will want to replace missing values with 
zeros.

• Collapse histogram columns: The histogram summary command produces multiple 
columns, one for every distinct value in the input column. This is necessary because 
the assembly tool requires numeric outputs as certain stages. These can be collapse 
back from a series of indicator columns to a single column.

For data exploration and visualisation, I recommend
1. Filtering to at most 50,000 rows
2. Collecting the data into R
3. Visualising it with the explore package (https://cran.r-

project.org/web/packages/explore/vignettes/explore_mtcars.html)
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Recommended setup & workflow

While you are welcome to use the assembly tool in the way that best suits you (being a 
good citizen of the shared datalab resources), I have found it to be especially effective as 
part of a broader workflow pattern.

Consider adopting one or more of the following practices to improve your IDI research.
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Each analysis needs its own

• Assembly file

• Excel population control file

• Excel measure control file

But it does not need its own copy of 
the assembly tool

Reduce clutter by using a single copy

Only one copy of the tool

While it can be tempting to have a copy of the Dataset Assembly Tool for each separate 
piece of analysis, only one copy of the tool is needed for an entire research project.

run_assembly.R requires two paths: the location of the tool and the location of the 
analysis.
• The location of the tool is the folder where general_assembly_tool.R and 

automated_tests.R are stored
• The location of the analysis is where run_assembly.R and the Excel control files are 

stored

When you run the assembly tool, it will first load the tool from the first folder and then 
carry out the assembly specified in the second folder.
Therefore you can have many Excel control files and many different datasets assembled, 
all using the same copy of the tool.
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Iteration is expected

But analysis is smoother when 
information flow is linear:

Raw  Prepared  Analysed  Results

Temptation to churn in place, but 
adding new raw data onto already 
analysed data creates confusion

Solution is to rerun assembly process

The iterative workflow

Exploration workflow

1. Identify the need for a new measure or a 
change to an existing measure

2. Explore IDI data (in SQL)

3. Propose and validate new measure

4. Define the new measure in SQL as either a 
table or view

5. Add the new measure to control file

6. Rerun assembly tool

7. Load dataset into analysis

8. Resume analysis

The nature of research and development is that it is non-linear: Data preparation and 
preliminary analysis reveals that other data is needed, so additional data is gathered, 
further results are produced, and the process iterates. While your process may be 
iterative and non-linear, the flow of information through your analysis can be linear.

Having a linear flow of information simplifies and clarifies your analysis. The goal is that 
at each stage all the data is in the same state:
Raw unformed IDI  prepared events  freshly assembled data  cleaned and analysis 
ready  results
In this way a single dataset is never a mixture of both raw & analysed data. Don’t add 
raw data to analysed data, add raw data to other raw data and analyse it all together.

Because the assembly tool is designed to be rerun, it helps ensure that the initial part of 
your data process is linear. Designing your data cleaning and analysis to be repeated 
once new data is added or definitions are changed, helps ensure you maintain this linear 
process.
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Stand alone SQL definitions

• Independent of summary tool

• Contain meta-data

• Easy to share & publish

• Easy use & adapt

• Improve IDI for all researchers

• Build a library of definitions

Document and share your definitions

Once you have researched the raw data, constructed a definition for a specific measure, 
and validated the correctness of the measure it is good practice to document your work. 
Writing up some documentation will be less effort than having to retrace your steps if 
you forget, and should take less time than the tool saves you.

Sharing your definitions is part of publishing your code. As more of us do this, we will 
together build a Library of Definitions. This will be a significant step in the maturity of 
the IDI. Imagine being able to get health definitions created by health experts, or benefit 
definitions created by benefit experts. The breadth of the IDI means we need a wide 
range of subject matter experts – this is a practical way to start.

I propose these definitions are written in SQL. This makes them accessible to both SAS 
and R users. Even if they prefer R or SAS, most IDI researchers know a little SQL anyway 
because that is how you view the raw data.

The ‘expanded header’ is the current documentation approach. Not necessarily an 
excellent approach, but more important to get started with an approach than to ensure 
the approach is perfect before starting. As the library of definitions grows we can expect 
this process will be refined.
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Translate R dplyr to SQL

• dbplyr package will translate dplyr 
commands from R into SQL

• Execute commands in SQL

• Reduce memory use and 
bottlenecks on R server

Collection of helper functions we 
have designed are included with tool.

Accessing SQL from R

While SQL is well suited to defining populations, events, and measures SAS and R tend to 
be preferred for programming.
Just as it is possible to connect SAS to SQL, write SAS commands, and have them 
executed by SQL,
it is also possible to connect R to SQL, write R commands, and have them executed by 
SQL.

This reduces memory use and bottlenecks on the R server. Uses SQL for its strength –
working across large datasets. Collect into R once prepared and tidied to use R for its 
strength – statistical analysis.

The key R package for doing this is dbplyr. Along with the assembly tool, we also provide 
a collection of helper functions to support researchers wanting to take this approach. An 
example using this approach is included in the documentation file (displayed in image).
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What to do if something goes 
wrong

Nothing is perfect, everything will break eventually. But most errors or problems should 
be fixable by the end user.
(Low dependence on an external expert, more self-service progress.)

Just because the presentation covers error handling in detail does NOT mean the tool is 
error prone. This section is detailed because so much effort has gone into ensuring the 
tool works smoothly for users.

Skip over this section in a short presentation.
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Program errors

• Dataset Assembly Tool does not complete running

• R or SQL gives error message

• Cause is most likely of a technical nature

Use errors

• Dataset Assembly Tool completes running but output is not as expected

• Unusual output discovered during data exploration

• Cause is most likely one of misunderstanding

Read the speakers notes in this presentation – they give extra guidance

Program errors and use errors

Two broad reasons things can go wrong:
1. The computer attempts something it can not do  program errors
2. The computer does as instructed but does not give the desired output  use errors

Because the tool reads in definitions created by the user and control files created by the 
user there is a lot of scope for the user to give the tool invalid or faulty inputs. This 
section is designed to help users give correct inputs to the tool, and to correct their 
inputs when things do not work as expected.

For some Use Errors, we have added checks to the tool that will give warnings or errors 
instead of producing unusual output. This blurs the difference between a Use Error and a 
Program Error.
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Places an error can occur

• Connection between R and SQL

• Within the code of the tool

• SQL definition scripts

• Excel control files

• Setup of run_assembly.R

• Runtime SQL errors

Read the error message carefully

Program errors can arise at each stage

IDI

Dataset 

Assembly 

Tool

Population Control 

filesMeasures

Assembled 

data for 

analysis

Raw data

Definitions/
business rules

Assembly

Analysis

There are a series of steps/stages that are involved in the assembling of data via the 
tool. Error are possible at each stage.

Program Errors at each of the different stages look different and have different solutions.
• Program Errors at all of the stages can be identified without R / programming 

knowledge.
• Program Errors at most of the stages can be fixed without R / programming 

knowledge.

Always read the error message, the tool has been designed to provide instructive error 
messages and user feedback.
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As per access2microdata email 6 August 2020

Security tickets for R expire. An expired ticket prevents R connecting to SQL.
• The tool will not run
• The unit tests that depend on connecting to SQL will not run

Error message: No Kerberos credentials available (default 
cache: KEYRING:persistent:<number> (or similar)

Solution: Logout from the IDE and login again.

Logging out at the end of each day is good practice.

R is unable to connect to SQL

We most often encountered this error message when returning to R after leaving it 
logged in overnight.
This has been consistently resolved for us by (1) ending the current session (red 1/0 
circle) and (2) logging out from RStudio (square & arrow symbol).
Both of these are good practice for finishing with & tidying up from an R session 
(releases R memory and restarts you with a clean environment).

Text from Access2microdata email 6 August 2020:

If you experience issues with ODBC:
1. If you get the error “No Kerberos credentials available (default cache: 

KEYRING:persistent:<number>)”, then logout from the Rstudio Pro IDE and login 
again, as it is a security requirement that Kerberos tickets expire.  Logging out at the 
end of the day is good practice, anyway.

2. Any errors referring to the ODBC driver version 11 not found, use: Driver = “ODBC 
Driver 17 for SQL Server”.

3. Any other ODBC errors: check if you have a personal copy of an old odbc CRAN 
package.  If so move it away.  Then the system version of the odbc CRAN package 
(/usr/share/R/library/odbc) will be used, which has been proven to work.
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Valid R, valid SQL, but server unresponsive

• The IDI is a shared environment

• The IDI involves networked resources

Hence other programs running on the server, or in the network, can interfere 
with the Dataset Assembly Tool.

• These problems usually resolve, once the other program finishes running

• Where problems persist or repeat, it may help to inform the Integrated Data 
team so they can look into the cause

No error but unresponsive

Poor performance / non-responsiveness is unlikely to be an error, and more likely to be 
high traffic or large programs.
In August 2020, the most common problem of this nature was R becomes non-
responsive because it is waiting for a response from SQL. If, while waiting for R, we went 
into SQL and requested a list of all Sandpit tables (a task that usually takes 1-2 seconds) 
we would instead receive an error message. This highlights that the problem is not with 
R or with the tool because SQL also errors.

Good checks to run:
1. Check you can use R without the tool
2. Check you can carry out equivalent work in SQL
3. Ask colleagues if they are experiencing the same or similar problems

When problems persist or repeat, you could inform the Integrated Data team in case 
they are unaware of the problem. When doing so we recommend providing details to 
assist their staff identify the cause (which may be you). This will not resolve the problem 
immediately, but it helps to improve the performance and robustness of the IDI 
environment – something that both Stats NZ and IDI researchers want.
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Automated tests

The assembly tool is covered by 
automated tests.

• Source the automated_tests.R file 
to run all tests

• If all the tests pass, the tool is 
working as designed

Tests can be run in sections

• This tests dependencies before 
dependents

• Run in sections to identify the 
point of failure

Program Errors in the tool code

Take a look at the image:
• The top third, lines 29-40, tests everything (but in no specific order). This code runs 

when the file is sourced.
• The middle third, lines 42-onwards, tests each section of the code in the order of 

dependency (later code will fail if earlier code does not pass). Run this code manually, 
line by line, is recommended if testing everything produces errors. This can be done 
by placing the cursor on the line you want to run and pressing Ctrl + Enter.

Note that line 49 is an if(FALSE) statement that prevents testing in sections running 
when testing everything. Do not run this line if you are trying to test in sections.
• The bottom third, the console, is an example of testing in sections. Here we have run 

lines 50, 51, and 52 to test the independent functions found in utility_functions.R
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These are your responsibility

Tool assembles your tables/views

• Run SQL scripts before assembly 
tool

Common things to check: three core 
parameters

• Prefix

• Project schema

• IDI refresh

Helpful tricks

• Simple definitions as Views in 
UserCode

• Complex definitions as Tables in 
Sandpit

• Index large Sandpit tables

• Run in Development Mode first

Population and measure definitions

Population and measure definitions are defined in SQL. They are prepared and run 
before being included in the tool assembly.
• Make sure your SQL definition files run
• Make sure you run all your SQL definitions before running the assembly tool
• Check your definitions for

• Correct prefix, schema, refresh
• You have not accidentally restricted yourself to the “TOP 1000” rows

Just because a definition runs does not mean it will perform well.
• Simple definitions should be created as views – reduce memory space and make use 

of existing indexes
• Complex definitions should be created as tables with indexes

If the error is in your SQL definition (population or measure) script, then it is not an 
assembly tool related error.
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Tool checks your input

Before assembly the validity of both 
Excel control files are checked

• Column names

• Delimiters

• Excel matches SQL

• Correct summary

You can also run just the validity 
checking without the assembly

Incorrect Excel control files

Before any dataset assembly happens the tool first checks that all your control file inputs 
are correct. Both control files are checked.
Four main checks are run:
1. The control files have all the required columns
2. All the entries in the required columns are correctly delimited
3. The SQL tables and columns specified in the control file exist in SQL
4. Summarising of variables is correct (e.g. you can’t sum text)

It will also give warnings if your summary input is inconsistent (e.g. there is no need to 
set Proportional = TRUE when counting).

You can run just the validity checking without the assembly. This helps with checking 
whether your Excel inputs are correct without having to wait for the assembly to run if 
they are.
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Incorrect Excel (1) – column names

Here is an example where the control file has an incorrect column name (but this would 
also happen if a column was missing).
The error message tells you that the column is missing (read the error messages).

Note that case (upper/lower) does not matter.
And that the File and Notes/description columns are optional.
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Incorrect Excel (2) – delimiters

After fixing the previous error and rerunning, we get a new error message.

Here is an example where the delimiters are incorrect. In one case there are no 
delimiters, and in the other we have used “ instead of [ ].
The error message tells you that delimiters are missing, how many, and where they are 
located.

Reminder:
• If the cell contents are SQL tables and columns then delimited [ ]
• If the cell contents are the value to use then delimit in “
• Measure_summarised_by and Proportional columns are not delimited

Note that double quotes is different from single quotes.
And straight double quotes are different from curly double quotes – if copy-and-paste 
from word check carefully that your quotes are straight not curly.
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Incorrect Excel (3) – Excel matches SQL

After fixing the previous error and rerunning, we get a new error message.

Here is an example where the tool can not find the columns specified in SQL.
• For [eth_other] this is because there is no column [eth_other] this should be a label 

“eth_other” and is incorrectly delimited
• For [snz_ethnicity_grp3_nb] this is a typo, the column name has been incorrectly 

entered (it should end _nbr] not _nb])
The error message gives you the value of the cell that can not be found.

If you program SQL with square brackets (as SQL defaults to when you ask to view the 
top 1000 rows) then the best way I have found of populating these cells is:
• double-click on a variable in SQL
• Copy
• and paste into Excel

43



Incorrect Excel (4) – correct summary

After fixing the previous error and rerunning, we get a new error message.

Here is an example where the contents of the column containing the value_measure are 
not compatible with the measure_summarised_by that has been chosen.
The error message tells you what column, what command, and why.

Many codes in the IDI are stored as text rather than as numeric. This is the most 
common cause I have encountered. Two solutions:
• Cast the variable to numeric in SQL: CAST(COL AS TYPE) AS new_name
• Use the histogram summary instead
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Only R you have to write

And it is just filling labels

• Only edit the user controls

• Logical values are capitals without 
quotes

• All other inputs are quoted

• SQL objects have [ ] delimiters

• Use forward slashes for file paths

Setup of run_assembly.R

This is the only piece of R code you have to edit, and all you are doing is entering your 
inputs.

• Only edit within the section labelled user controls (lines 21-40)
• Logical values are in capitals, no quotes
• Everything else is quoted
• SQL objects (database, schema, table names) have [ ] delimiters without their quotes 

(e.g. “[output_database]”)

Careful with slashes in file paths. Windows uses backward \ slashes, but R uses forward / 
slashes. This will cause errors if copy-and-paste from windows without editing.

45



Valid R, invalid SQL

• Tool works by using R code to make SQL code

• This error occurs when invalid SQL code is generated

Runtime SQL errors

Sometimes the combination of the input definitions (population and measure) and the 
SQL code generated by the assembly tool produce errors.

Note how the message starts with “Error: <SQL>” this is a clear sign of a Runtime SQL 
error. Also observe that the error happened while writing a table. Because writing a 
table is an SQL activity, this also tells us the error occurred in SQL.

Possibilities include:
1. Attempting to SUM a column that is not numeric  The SQL definition and control 

file both seem correct, but when combining them (text column from SQL definition, 
SUM instruction from control file) you get an error (the tool now checks for this).

2. Too many variables  SQL has a maximum of 1024 columns, so if you create lots of 
measures (or use HISTOGRAM a lot) you can cause this error. You will need to reduce 
the number of measures or find a better way to express you current measures.

3. Numeric overflow  SQL has a maximum sized integer number it can consider, so if 
you create a very large value (such as total income ever recorded for all people in the 
South Island) you can cause this error. You will need to scale down your value 
(calculate in $millions) or find another way to measure it.
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Review in SQL

R tells you where the error occurs, but 
not why

• Open “SQL tmp scripts” folder

• Run the latest code file in SQL 
Server Management Studio

• Determine from the error message 
where the problem is

“SQL tmp scripts” folder

When this happens find the “SQL tmp scripts” folder. Every (non-trivial) SQL command 
executed by the tool gets saved in this folder. Sort the files and open the latest one in 
SQL Server Management Studio. This should be the code that caused the error. Test 
whether the code can be run directly from SQL.
• If it runs fine, then there may not be an error – just a random hiccup – try running the 

assembly tool again
• If it takes a very long time to run, then it probably takes too long to run for R and the 

connection is timing out
• If it creates errors, then further inspection is necessary to determine which part of 

the query is causing the error

You can delete the “SQL tmp scripts” folder without risk – it will recreate itself. We 
recommend that you delete the folder regularly as it is only there to support debugging 
/ logging and can accumulate thousands of little files which have little value.
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Unlike program errors

• Use errors are often created
when a population or measure 
is defined

• But are only found after the tool 
is run and the dataset is 
assembled

Users are responsible for their own definitions

Use Errors are often in setup

IDI
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Tool

Population Control 

filesMeasures

Assembled 

data for 

analysis

Raw data

Definitions/
business rules

Assembly

Analysis

Once output is assembled, it is important to assess the prepared table before it is used 
in analysis. This often happens as part of tidying up the dataset for analysis (handling 
missing values, reclassifying variables, removing identities with errors, etc.).

It is not always possible to spot Use Errors from the reduced output produced when the 
tool is run in DEVELOPMENT MODE. You will often have to fully assemble the dataset 
before you can check for use error.

Where the assembled dataset contains output that is different from expectations, then 
further investigation will likely be required.
• Auditing (manually reconstructing) the values for a single identity an effective way to 

identify user error
• When high standards of quality are critical, you may want to audit the assembled 

dataset even if there is no sign of use error

In the following slides, we discuss several types of use error that we are already aware 
of. More examples may be added later as the number of people using the tool increases.
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Cause: duplicate identities in population

• An identity that appears twice in your input population will have output 
values that are twice as large.

• If you want to consider that same identity for a different purpose, ensure it 
has a different Identity label, summary period label, or summary period start 
and end date.

• Also check for duplicates in your measure table.

Too large values in output

Solution: Ensure population is unique

Because the population table and the measure tables are joined using “INNER JOIN”
duplicates in either the population or measure table will get picked up more than once
in your output.

Example: Research considers mothers who have a baby born in 2017 or 2018. Initial
input population is all mothers in MOH maternity records with year given birth 2017 or
2018. What about mothers who gave birth two (or more) times?
1. Do nothing Duplicate output for these mothers
2. De-duplicate the population  One output row for each mother, but mothers who

gave birth twice could have twice as many events as mothers who only gave birth
once

3. Set the summary period start and end date based on the date of the birth 
Mothers who gave birth twice appear twice in output dataset, once for each set of
dates
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Cause: overlapping time periods in input data

• DURATION counts all time periods that are within the study period.

• If the same identity has two time period records that overlap, then the days 
in the overlap will be counted twice – once for each record.

Duration is longer than study period

Solution: Merge overlapping time periods before assembly

DURATION sums up the individual durations of all time periods that are within the study
period. It does not check for whether any of the individual durations overlap. This can
produce unexpected output such as 400+ days of employment within a single year.

The solution is to merge your overlapping time periods before assembly.

You can find exemplar code for merging spells in the definitions library SWA has
published alongside the assembly tool:
https://github.com/nz-social-wellbeing-agency/definitions_library

Good existing definitions to check are employment spells, education spells, or benefit
spells. In these SQL definitions we often refer to the merging of overlapping time periods
as “Condensing spells”.
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Cause: Different refreshes used for population and measure

• Some unique identifiers, like [snz_uid], change between refreshes. So if you 
use different refreshes the wrong identities get joined together.

• Often observed in dataset as wrong identity having/missing a measure
(for example, children receiving a retirement pension).

• Also observed by too few people with a measure
(for example, only 10 percent of people having any income).

Wrong identity with(out) measure

Solution: Check that every definition refers to the same refresh

Research should be done using a consistent IDI refresh. When some definitions come
from one refresh, and other refreshes some from another, then identity codes can
change between refreshes.

The best way we currently have to check this is searching all SQL definition files for
“IDI_Clean_”. Update and rerun any files that are using the wrong refresh.

One supporting tool we hope to see in the future will reduce the risk of this error: A tool
that finds the refresh and project schema for every SQL definition. This would make
checking for consistency between files much easier.
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Cause: Identity columns do not match

• No requirement that all identity columns have the same name (though they 
often will).

• But if you try to join numeric identities to text identities there will be no 
matches and an entire measure will not be included in the output.

• Easy mistake to make working with numeric codes, such as for regional 
councils: “01” looks like a number but is saved as text.

Measure missing completely

Solution: Ensure all identity columns are consistent

The names of identity columns can be different but the format must be the same
• It is critical to ensure that all the identity columns are in same data format.
• Mismatch of datatypes might not always throw error and can lead to incorrect 

joins.

In some special cases SQL will join numeric and text data. If the identities are smaller 
numbers (for example regional council codes, which are 2 digits), some codes may join: 
the text “10” may join to the number 10. But other codes will not join: the text “01” will 
not join to the number 1.

By default [snz_uid] values are all numeric so this is unlikely to be an problem if using
[snz_uid]
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Cause: Identity has no measures

• The population is joined to measures by an INNER JOIN. So if an identity does 
not have a measure no output is produced for that measure.

• If no output for an identity is produced for any measure, that identity will not 
appear in the final dataset.

• Also check that the dates for the measures and the dates for the population 
overlap.

Identity missing completely

Solution: Verify that identity has measures in the input data

If an identity does not have any measures it will not appear in the final output. This is
most likely to occur when working with identities that are not linked to the IDI spine, are
not in the residential population, or are ‘rare’ in some way.

If you want to ensure that an identity is included in the output dataset the easiest was is
to include the study population in the measure table. Create a new measure that checks
if identities in the population table EXISTS in the population table.
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Cause: Inputs are complex or require indexing

• Assembly requires joining tables together. Indexes make joining much faster.

• Population and measures should be written as Views only when they are 
simple. Views use the indexes from the source table.

• More complex definitions should be saved as tables. New tables do not have 
indexes by default, you will need to add these.

Assembly runs too slow

Solution: Rewrite complex definitions as tables with indexes

The speed of the assembly tool depends on how fast it is to access and combine the
population and measure definitions. Definitions that are slow to access will result in
slow performance for the assembly tool.

When running the tool in DEVELOPMENT MODE check for measures that perform
slowly. Consider recoding these measures to be more efficient. Adding (clustered)
indexes on the identity column improves the assembly speed by a lot.

If you are not sure what definitions are simple and can be Views, and what definitions
are too complex and should be tables, take a look at some existing measure definitions.
These should also contain code for adding indexes to your tables.
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Producing panel data is difficult

To get panel output like this:

Table_name Identity_column Label_identity Summary_period_start_date Summary_period_end_date Label_summary_period
[defn_res_father] [snz_uid] "father" "2019-01-01" "2019-12-31" "2019"
[defn_res_father] [snz_uid] "father" "2020-01-01" "2020-12-31" "2020"
[defn_res_father] [snz_uid] "father" "2019-01-01" "2019-12-31" "2019"
[defn_res_father] [snz_uid] "father" "2020-01-01" "2020-12-31" "2020"

[defn_res_mother] [snz_uid] "mother" "2019-01-01" "2019-12-31" "2019"
[defn_res_mother] [snz_uid] "mother" "2020-01-01" "2020-12-31" "2020"
[defn_res_mother] [snz_uid] "mother" "2019-01-01" "2019-12-31" "2019"
[defn_res_mother] [snz_uid] "mother" "2020-01-01" "2020-12-31" "2020"

Identity_column Label_identity Label_summary Total_income
1111 father 2019 3839
1111 father 2020 9354
2222 father 2019 4449
2222 father 2020 4492
3333 mother 2019 5204
3333 mother 2020 5032
4444 mother 2019 3968
4444 mother 2020 9584

Solution: Setup your population control file like this:

Producing panel date is best done by combining identity and summary period labels.

The Label_identity and Label_summary_period inputs makes it easy to repeat the 
measures for different time-frames and different sub-populations.

For example, if you want to find total income for individuals in 2 set of populations (e.g. 
fathers and mothers) for 2019 and 2020, you can define your population with two 
identity labels – “mother” and “father” – and  two summary labels – “2019” and “2020”.

You can also use SQL columns for the label identity, start date, end date, and summary 
period label.
As an alternative to the example above: If you used a single table [defn_res_parents] 
that contained both mothers and fathers with two columns [snz_uid] and [role], then 
the population file would only have four rows. Instead of “father” and “mother” in the 
Label_identity column you would put [role] because the [role] column contains the 
labels father and mother.
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Do not want panel data

But timing to appear in cross-section

Several time periods but not panel data

Solution: Define inputs that combine date and measure

identity_column label_identity Year Birth_year Born_overseas Income
1111 Person_A 2019 1980 0 3839
1111 Person_A 2020 1980 0 4354
2222 Person_B 2019 1970 1 4449
2222 Person_B 2020 1970 1 4492

Identity_column Label_identity Birth_year Born_overseas Income_2019 Income_2020
1111 Person_A 1980 0 3839 4354
2222 Person_B 1970 1 4449 4492

Suppose you want a cross-section dataset but would like income for last year and this
year. So rather than two rows per identity with columns [year] and [income] (as a panel
dataset would have), you want one row per identity with columns [income_this_year]
and [income_last_year].

Several approaches:
1. Assemble a panel and use lag/lead functions to fetch the value for the next year (but

this duplicates all the other columns).
2. Assemble two datasets, a master dataset and a minimal dataset for the extra year

then join them together (but can not do assembly in one step).
3. Define income for each year in the input measure and include both in the control file

(recommended).

For our recommended approach, we can transform a measure table with columns [year]
and [income] to a table with columns [year], [income], [income_2019] and
[income_2020] by creating two new columns: [income_2019] and [income_2020]. In
SQL this might look like:

SELECT *
,IIF([year] = 2019, [income], NULL) AS [income_2019]
,IIF([year] = 2020, [income], NULL) AS [income_2020]

FROM [db].[schema].[table]
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Gather error information

Be well prepared

• What causes the error?

• What is the error message?

• What have you tried already?

• What is working?

Request support

• Poor preparation  poor help

When all else fails, ask for help

Read the speakers notes in this presentation – they give extra guidance

Some errors will be due to the assembly tool, and will not be fixable without a 
developer. The code is open source, so if you have a friendly R developer you could ask 
them. Otherwise you will need to ask for expert support.

Before you do, make sure you are well prepared.
• Work through this presentation, are there any details you have missed?
• Work through the guidance document
• Isolate the issue – show how it occurs with only one measure and one population.
• Some staff in the Integrated Data team (access2microdata) are familiar with the tool 

– check with them.

As a final resort, contact the tool developer / maintainer.
Remember, the developer is not a helpdesk, but a fellow researcher.
• How can you help me to help you?
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https://github.com/nz-social-wellbeing-agency/dataset_assembly_tool

swa.govt.nz

Simon Anastasiadis

Thank you for your time and attention.

I invite you to adopt the Dataset Assembly Tool for your IDI research.
It has saved me a lot of time and headaches trying to build datasets manually.
There is an initial library of definitions from my use of it.
So I am confident it will add value to your work.
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